mod atlas;
#[cfg(feature = "image")]
mod raster;
#[cfg(feature = "svg")]
mod vector;
use crate::Transformation;
use atlas::Atlas;
use iced_graphics::layer;
use iced_native::Rectangle;
use std::cell::RefCell;
use std::mem;
use zerocopy::AsBytes;
#[cfg(feature = "image")]
use iced_native::image;
#[cfg(feature = "svg")]
use iced_native::svg;
#[derive(Debug)]
pub struct Pipeline {
#[cfg(feature = "image")]
raster_cache: RefCell<raster::Cache>,
#[cfg(feature = "svg")]
vector_cache: RefCell<vector::Cache>,
pipeline: wgpu::RenderPipeline,
uniforms: wgpu::Buffer,
vertices: wgpu::Buffer,
indices: wgpu::Buffer,
instances: wgpu::Buffer,
constants: wgpu::BindGroup,
texture: wgpu::BindGroup,
texture_version: usize,
texture_layout: wgpu::BindGroupLayout,
texture_atlas: Atlas,
}
impl Pipeline {
pub fn new(device: &wgpu::Device, format: wgpu::TextureFormat) -> Self {
let sampler = device.create_sampler(&wgpu::SamplerDescriptor {
address_mode_u: wgpu::AddressMode::ClampToEdge,
address_mode_v: wgpu::AddressMode::ClampToEdge,
address_mode_w: wgpu::AddressMode::ClampToEdge,
mag_filter: wgpu::FilterMode::Linear,
min_filter: wgpu::FilterMode::Linear,
mipmap_filter: wgpu::FilterMode::Linear,
lod_min_clamp: -100.0,
lod_max_clamp: 100.0,
compare: wgpu::CompareFunction::Always,
});
let constant_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: None,
bindings: &[
wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::VERTEX,
ty: wgpu::BindingType::UniformBuffer { dynamic: false },
},
wgpu::BindGroupLayoutEntry {
binding: 1,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::Sampler { comparison: false },
},
],
});
let uniforms = Uniforms {
transform: Transformation::identity().into(),
};
let uniforms_buffer = device.create_buffer_with_data(
uniforms.as_bytes(),
wgpu::BufferUsage::UNIFORM | wgpu::BufferUsage::COPY_DST,
);
let constant_bind_group =
device.create_bind_group(&wgpu::BindGroupDescriptor {
label: None,
layout: &constant_layout,
bindings: &[
wgpu::Binding {
binding: 0,
resource: wgpu::BindingResource::Buffer {
buffer: &uniforms_buffer,
range: 0..std::mem::size_of::<Uniforms>() as u64,
},
},
wgpu::Binding {
binding: 1,
resource: wgpu::BindingResource::Sampler(&sampler),
},
],
});
let texture_layout =
device.create_bind_group_layout(&wgpu::BindGroupLayoutDescriptor {
label: None,
bindings: &[wgpu::BindGroupLayoutEntry {
binding: 0,
visibility: wgpu::ShaderStage::FRAGMENT,
ty: wgpu::BindingType::SampledTexture {
dimension: wgpu::TextureViewDimension::D2,
component_type: wgpu::TextureComponentType::Float,
multisampled: false,
},
}],
});
let layout =
device.create_pipeline_layout(&wgpu::PipelineLayoutDescriptor {
bind_group_layouts: &[&constant_layout, &texture_layout],
});
let vs = include_bytes!("shader/image.vert.spv");
let vs_module = device.create_shader_module(
&wgpu::read_spirv(std::io::Cursor::new(&vs[..]))
.expect("Read image vertex shader as SPIR-V"),
);
let fs = include_bytes!("shader/image.frag.spv");
let fs_module = device.create_shader_module(
&wgpu::read_spirv(std::io::Cursor::new(&fs[..]))
.expect("Read image fragment shader as SPIR-V"),
);
let pipeline =
device.create_render_pipeline(&wgpu::RenderPipelineDescriptor {
layout: &layout,
vertex_stage: wgpu::ProgrammableStageDescriptor {
module: &vs_module,
entry_point: "main",
},
fragment_stage: Some(wgpu::ProgrammableStageDescriptor {
module: &fs_module,
entry_point: "main",
}),
rasterization_state: Some(wgpu::RasterizationStateDescriptor {
front_face: wgpu::FrontFace::Cw,
cull_mode: wgpu::CullMode::None,
depth_bias: 0,
depth_bias_slope_scale: 0.0,
depth_bias_clamp: 0.0,
}),
primitive_topology: wgpu::PrimitiveTopology::TriangleList,
color_states: &[wgpu::ColorStateDescriptor {
format,
color_blend: wgpu::BlendDescriptor {
src_factor: wgpu::BlendFactor::SrcAlpha,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
alpha_blend: wgpu::BlendDescriptor {
src_factor: wgpu::BlendFactor::One,
dst_factor: wgpu::BlendFactor::OneMinusSrcAlpha,
operation: wgpu::BlendOperation::Add,
},
write_mask: wgpu::ColorWrite::ALL,
}],
depth_stencil_state: None,
vertex_state: wgpu::VertexStateDescriptor {
index_format: wgpu::IndexFormat::Uint16,
vertex_buffers: &[
wgpu::VertexBufferDescriptor {
stride: mem::size_of::<Vertex>() as u64,
step_mode: wgpu::InputStepMode::Vertex,
attributes: &[wgpu::VertexAttributeDescriptor {
shader_location: 0,
format: wgpu::VertexFormat::Float2,
offset: 0,
}],
},
wgpu::VertexBufferDescriptor {
stride: mem::size_of::<Instance>() as u64,
step_mode: wgpu::InputStepMode::Instance,
attributes: &[
wgpu::VertexAttributeDescriptor {
shader_location: 1,
format: wgpu::VertexFormat::Float2,
offset: 0,
},
wgpu::VertexAttributeDescriptor {
shader_location: 2,
format: wgpu::VertexFormat::Float2,
offset: 4 * 2,
},
wgpu::VertexAttributeDescriptor {
shader_location: 3,
format: wgpu::VertexFormat::Float2,
offset: 4 * 4,
},
wgpu::VertexAttributeDescriptor {
shader_location: 4,
format: wgpu::VertexFormat::Float2,
offset: 4 * 6,
},
wgpu::VertexAttributeDescriptor {
shader_location: 5,
format: wgpu::VertexFormat::Uint,
offset: 4 * 8,
},
],
},
],
},
sample_count: 1,
sample_mask: !0,
alpha_to_coverage_enabled: false,
});
let vertices = device.create_buffer_with_data(
QUAD_VERTS.as_bytes(),
wgpu::BufferUsage::VERTEX,
);
let indices = device.create_buffer_with_data(
QUAD_INDICES.as_bytes(),
wgpu::BufferUsage::INDEX,
);
let instances = device.create_buffer(&wgpu::BufferDescriptor {
label: None,
size: mem::size_of::<Instance>() as u64 * Instance::MAX as u64,
usage: wgpu::BufferUsage::VERTEX | wgpu::BufferUsage::COPY_DST,
});
let texture_atlas = Atlas::new(device);
let texture = device.create_bind_group(&wgpu::BindGroupDescriptor {
label: None,
layout: &texture_layout,
bindings: &[wgpu::Binding {
binding: 0,
resource: wgpu::BindingResource::TextureView(
&texture_atlas.view(),
),
}],
});
Pipeline {
#[cfg(feature = "image")]
raster_cache: RefCell::new(raster::Cache::new()),
#[cfg(feature = "svg")]
vector_cache: RefCell::new(vector::Cache::new()),
pipeline,
uniforms: uniforms_buffer,
vertices,
indices,
instances,
constants: constant_bind_group,
texture,
texture_version: texture_atlas.layer_count(),
texture_layout,
texture_atlas,
}
}
#[cfg(feature = "image")]
pub fn dimensions(&self, handle: &image::Handle) -> (u32, u32) {
let mut cache = self.raster_cache.borrow_mut();
let memory = cache.load(&handle);
memory.dimensions()
}
#[cfg(feature = "svg")]
pub fn viewport_dimensions(&self, handle: &svg::Handle) -> (u32, u32) {
let mut cache = self.vector_cache.borrow_mut();
let svg = cache.load(&handle);
svg.viewport_dimensions()
}
pub fn draw(
&mut self,
device: &wgpu::Device,
encoder: &mut wgpu::CommandEncoder,
images: &[layer::Image],
transformation: Transformation,
bounds: Rectangle<u32>,
target: &wgpu::TextureView,
_scale: f32,
) {
let instances: &mut Vec<Instance> = &mut Vec::new();
#[cfg(feature = "image")]
let mut raster_cache = self.raster_cache.borrow_mut();
#[cfg(feature = "svg")]
let mut vector_cache = self.vector_cache.borrow_mut();
for image in images {
match &image {
#[cfg(feature = "image")]
layer::Image::Raster { handle, bounds } => {
if let Some(atlas_entry) = raster_cache.upload(
handle,
device,
encoder,
&mut self.texture_atlas,
) {
add_instances(
[bounds.x, bounds.y],
[bounds.width, bounds.height],
atlas_entry,
instances,
);
}
}
#[cfg(not(feature = "image"))]
layer::Image::Raster { .. } => {}
#[cfg(feature = "svg")]
layer::Image::Vector { handle, bounds } => {
let size = [bounds.width, bounds.height];
if let Some(atlas_entry) = vector_cache.upload(
handle,
size,
_scale,
device,
encoder,
&mut self.texture_atlas,
) {
add_instances(
[bounds.x, bounds.y],
size,
atlas_entry,
instances,
);
}
}
#[cfg(not(feature = "svg"))]
layer::Image::Vector { .. } => {}
}
}
if instances.is_empty() {
return;
}
let texture_version = self.texture_atlas.layer_count();
if self.texture_version != texture_version {
log::info!("Atlas has grown. Recreating bind group...");
self.texture =
device.create_bind_group(&wgpu::BindGroupDescriptor {
label: None,
layout: &self.texture_layout,
bindings: &[wgpu::Binding {
binding: 0,
resource: wgpu::BindingResource::TextureView(
&self.texture_atlas.view(),
),
}],
});
self.texture_version = texture_version;
}
let uniforms_buffer = device.create_buffer_with_data(
Uniforms {
transform: transformation.into(),
}
.as_bytes(),
wgpu::BufferUsage::COPY_SRC,
);
encoder.copy_buffer_to_buffer(
&uniforms_buffer,
0,
&self.uniforms,
0,
std::mem::size_of::<Uniforms>() as u64,
);
let instances_buffer = device.create_buffer_with_data(
instances.as_bytes(),
wgpu::BufferUsage::COPY_SRC,
);
let mut i = 0;
let total = instances.len();
while i < total {
let end = (i + Instance::MAX).min(total);
let amount = end - i;
encoder.copy_buffer_to_buffer(
&instances_buffer,
(i * std::mem::size_of::<Instance>()) as u64,
&self.instances,
0,
(amount * std::mem::size_of::<Instance>()) as u64,
);
let mut render_pass =
encoder.begin_render_pass(&wgpu::RenderPassDescriptor {
color_attachments: &[
wgpu::RenderPassColorAttachmentDescriptor {
attachment: target,
resolve_target: None,
load_op: wgpu::LoadOp::Load,
store_op: wgpu::StoreOp::Store,
clear_color: wgpu::Color {
r: 0.0,
g: 0.0,
b: 0.0,
a: 0.0,
},
},
],
depth_stencil_attachment: None,
});
render_pass.set_pipeline(&self.pipeline);
render_pass.set_bind_group(0, &self.constants, &[]);
render_pass.set_bind_group(1, &self.texture, &[]);
render_pass.set_index_buffer(&self.indices, 0, 0);
render_pass.set_vertex_buffer(0, &self.vertices, 0, 0);
render_pass.set_vertex_buffer(1, &self.instances, 0, 0);
render_pass.set_scissor_rect(
bounds.x,
bounds.y,
bounds.width,
bounds.height,
);
render_pass.draw_indexed(
0..QUAD_INDICES.len() as u32,
0,
0..amount as u32,
);
i += Instance::MAX;
}
}
pub fn trim_cache(&mut self) {
#[cfg(feature = "image")]
self.raster_cache.borrow_mut().trim(&mut self.texture_atlas);
#[cfg(feature = "svg")]
self.vector_cache.borrow_mut().trim(&mut self.texture_atlas);
}
}
#[repr(C)]
#[derive(Clone, Copy, AsBytes)]
pub struct Vertex {
_position: [f32; 2],
}
const QUAD_INDICES: [u16; 6] = [0, 1, 2, 0, 2, 3];
const QUAD_VERTS: [Vertex; 4] = [
Vertex {
_position: [0.0, 0.0],
},
Vertex {
_position: [1.0, 0.0],
},
Vertex {
_position: [1.0, 1.0],
},
Vertex {
_position: [0.0, 1.0],
},
];
#[repr(C)]
#[derive(Debug, Clone, Copy, AsBytes)]
struct Instance {
_position: [f32; 2],
_size: [f32; 2],
_position_in_atlas: [f32; 2],
_size_in_atlas: [f32; 2],
_layer: u32,
}
impl Instance {
pub const MAX: usize = 1_000;
}
#[repr(C)]
#[derive(Debug, Clone, Copy, AsBytes)]
struct Uniforms {
transform: [f32; 16],
}
fn add_instances(
image_position: [f32; 2],
image_size: [f32; 2],
entry: &atlas::Entry,
instances: &mut Vec<Instance>,
) {
match entry {
atlas::Entry::Contiguous(allocation) => {
add_instance(image_position, image_size, allocation, instances);
}
atlas::Entry::Fragmented { fragments, size } => {
let scaling_x = image_size[0] / size.0 as f32;
let scaling_y = image_size[1] / size.1 as f32;
for fragment in fragments {
let allocation = &fragment.allocation;
let [x, y] = image_position;
let (fragment_x, fragment_y) = fragment.position;
let (fragment_width, fragment_height) = allocation.size();
let position = [
x + fragment_x as f32 * scaling_x,
y + fragment_y as f32 * scaling_y,
];
let size = [
fragment_width as f32 * scaling_x,
fragment_height as f32 * scaling_y,
];
add_instance(position, size, allocation, instances);
}
}
}
}
#[inline]
fn add_instance(
position: [f32; 2],
size: [f32; 2],
allocation: &atlas::Allocation,
instances: &mut Vec<Instance>,
) {
let (x, y) = allocation.position();
let (width, height) = allocation.size();
let layer = allocation.layer();
let instance = Instance {
_position: position,
_size: size,
_position_in_atlas: [
(x as f32 + 0.5) / atlas::SIZE as f32,
(y as f32 + 0.5) / atlas::SIZE as f32,
],
_size_in_atlas: [
(width as f32 - 1.0) / atlas::SIZE as f32,
(height as f32 - 1.0) / atlas::SIZE as f32,
],
_layer: layer as u32,
};
instances.push(instance);
}