1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
//! Distribute elements using a flex-based layout.
// This code is heavily inspired by the [`druid`] codebase.
//
// [`druid`]: https://github.com/xi-editor/druid
//
// Copyright 2018 The xi-editor Authors, Héctor Ramón
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use crate::{
    layout::{Limits, Node},
    Align, Element, Point, Size,
};

/// The main axis of a flex layout.
#[derive(Debug)]
pub enum Axis {
    /// The horizontal axis
    Horizontal,

    /// The vertical axis
    Vertical,
}

impl Axis {
    fn main(&self, size: Size) -> f32 {
        match self {
            Axis::Horizontal => size.width,
            Axis::Vertical => size.height,
        }
    }

    fn cross(&self, size: Size) -> f32 {
        match self {
            Axis::Horizontal => size.height,
            Axis::Vertical => size.width,
        }
    }

    fn pack(&self, main: f32, cross: f32) -> (f32, f32) {
        match self {
            Axis::Horizontal => (main, cross),
            Axis::Vertical => (cross, main),
        }
    }
}

/// Computes the flex layout with the given axis and limits, applying spacing,
/// padding and alignment to the items as needed.
///
/// It returns a new layout [`Node`].
///
/// [`Node`]: ../struct.Node.html
pub fn resolve<Message, Renderer>(
    axis: Axis,
    renderer: &Renderer,
    limits: &Limits,
    padding: f32,
    spacing: f32,
    align_items: Align,
    items: &[Element<'_, Message, Renderer>],
) -> Node
where
    Renderer: crate::Renderer,
{
    let limits = limits.pad(padding);
    let total_spacing = spacing * items.len().saturating_sub(1) as f32;
    let max_cross = axis.cross(limits.max());

    let mut fill_sum = 0;
    let mut cross = axis.cross(limits.min()).max(axis.cross(limits.fill()));
    let mut available = axis.main(limits.max()) - total_spacing;

    let mut nodes: Vec<Node> = Vec::with_capacity(items.len());
    nodes.resize(items.len(), Node::default());

    for (i, child) in items.iter().enumerate() {
        let fill_factor = match axis {
            Axis::Horizontal => child.width(),
            Axis::Vertical => child.height(),
        }
        .fill_factor();

        if fill_factor == 0 {
            let (max_width, max_height) = axis.pack(available, max_cross);

            let child_limits =
                Limits::new(Size::ZERO, Size::new(max_width, max_height));

            let layout = child.layout(renderer, &child_limits);
            let size = layout.size();

            available -= axis.main(size);
            cross = cross.max(axis.cross(size));

            nodes[i] = layout;
        } else {
            fill_sum += fill_factor;
        }
    }

    let remaining = available.max(0.0);

    for (i, child) in items.iter().enumerate() {
        let fill_factor = match axis {
            Axis::Horizontal => child.width(),
            Axis::Vertical => child.height(),
        }
        .fill_factor();

        if fill_factor != 0 {
            let max_main = remaining * fill_factor as f32 / fill_sum as f32;
            let min_main = if max_main.is_infinite() {
                0.0
            } else {
                max_main
            };

            let (min_main, min_cross) =
                axis.pack(min_main, axis.cross(limits.min()));

            let (max_main, max_cross) =
                axis.pack(max_main, axis.cross(limits.max()));

            let child_limits = Limits::new(
                Size::new(min_main, min_cross),
                Size::new(max_main, max_cross),
            );

            let layout = child.layout(renderer, &child_limits);
            cross = cross.max(axis.cross(layout.size()));

            nodes[i] = layout;
        }
    }

    let mut main = padding;

    for (i, node) in nodes.iter_mut().enumerate() {
        if i > 0 {
            main += spacing;
        }

        let (x, y) = axis.pack(main, padding);

        node.move_to(Point::new(x, y));

        match axis {
            Axis::Horizontal => {
                node.align(Align::Start, align_items, Size::new(0.0, cross));
            }
            Axis::Vertical => {
                node.align(align_items, Align::Start, Size::new(cross, 0.0));
            }
        }

        let size = node.size();

        main += axis.main(size);
    }

    let (width, height) = axis.pack(main - padding, cross);
    let size = limits.resolve(Size::new(width, height));

    Node::with_children(size.pad(padding), nodes)
}