1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
//! Listen to external events in your application.
mod tracker;

pub use tracker::Tracker;

use crate::BoxStream;

/// A request to listen to external events.
///
/// Besides performing async actions on demand with [`Command`], most
/// applications also need to listen to external events passively.
///
/// A [`Subscription`] is normally provided to some runtime, like a [`Command`],
/// and it will generate events as long as the user keeps requesting it.
///
/// For instance, you can use a [`Subscription`] to listen to a WebSocket
/// connection, keyboard presses, mouse events, time ticks, etc.
///
/// This type is normally aliased by runtimes with a specific `Event` and/or
/// `Hasher`.
///
/// [`Command`]: ../struct.Command.html
/// [`Subscription`]: struct.Subscription.html
pub struct Subscription<Hasher, Event, Output> {
    recipes: Vec<Box<dyn Recipe<Hasher, Event, Output = Output>>>,
}

impl<H, E, O> Subscription<H, E, O>
where
    H: std::hash::Hasher,
{
    /// Returns an empty [`Subscription`] that will not produce any output.
    ///
    /// [`Subscription`]: struct.Subscription.html
    pub fn none() -> Self {
        Self {
            recipes: Vec::new(),
        }
    }

    /// Creates a [`Subscription`] from a [`Recipe`] describing it.
    ///
    /// [`Subscription`]: struct.Subscription.html
    /// [`Recipe`]: trait.Recipe.html
    pub fn from_recipe(
        recipe: impl Recipe<H, E, Output = O> + 'static,
    ) -> Self {
        Self {
            recipes: vec![Box::new(recipe)],
        }
    }

    /// Batches all the provided subscriptions and returns the resulting
    /// [`Subscription`].
    ///
    /// [`Subscription`]: struct.Subscription.html
    pub fn batch(
        subscriptions: impl IntoIterator<Item = Subscription<H, E, O>>,
    ) -> Self {
        Self {
            recipes: subscriptions
                .into_iter()
                .flat_map(|subscription| subscription.recipes)
                .collect(),
        }
    }

    /// Returns the different recipes of the [`Subscription`].
    ///
    /// [`Subscription`]: struct.Subscription.html
    pub fn recipes(self) -> Vec<Box<dyn Recipe<H, E, Output = O>>> {
        self.recipes
    }

    /// Adds a value to the [`Subscription`] context.
    ///
    /// The value will be part of the identity of a [`Subscription`].
    ///
    /// This is necessary if you want to use multiple instances of the same
    /// [`Subscription`] to produce different kinds of messages based on some
    /// external data.
    ///
    /// [`Subscription`]: struct.Subscription.html
    pub fn with<T>(mut self, value: T) -> Subscription<H, E, (T, O)>
    where
        H: 'static,
        E: 'static,
        O: 'static,
        T: std::hash::Hash + Clone + Send + Sync + 'static,
    {
        Subscription {
            recipes: self
                .recipes
                .drain(..)
                .map(|recipe| {
                    Box::new(With::new(recipe, value.clone()))
                        as Box<dyn Recipe<H, E, Output = (T, O)>>
                })
                .collect(),
        }
    }

    /// Transforms the [`Subscription`] output with the given function.
    ///
    /// [`Subscription`]: struct.Subscription.html
    pub fn map<A>(
        mut self,
        f: impl Fn(O) -> A + Send + Sync + 'static,
    ) -> Subscription<H, E, A>
    where
        H: 'static,
        E: 'static,
        O: 'static,
        A: 'static,
    {
        let function = std::sync::Arc::new(f);

        Subscription {
            recipes: self
                .recipes
                .drain(..)
                .map(|recipe| {
                    Box::new(Map::new(recipe, function.clone()))
                        as Box<dyn Recipe<H, E, Output = A>>
                })
                .collect(),
        }
    }
}

impl<I, O, H> std::fmt::Debug for Subscription<I, O, H> {
    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
        f.debug_struct("Subscription").finish()
    }
}

/// The description of a [`Subscription`].
///
/// A [`Recipe`] is the internal definition of a [`Subscription`]. It is used
/// by runtimes to run and identify subscriptions. You can use it to create your
/// own!
///
/// [`Subscription`]: struct.Subscription.html
/// [`Recipe`]: trait.Recipe.html
///
/// # Examples
/// The repository has a couple of [examples] that use a custom [`Recipe`]:
///
/// - [`download_progress`], a basic application that asynchronously downloads
/// a dummy file of 100 MB and tracks the download progress.
/// - [`stopwatch`], a watch with start/stop and reset buttons showcasing how
/// to listen to time.
///
/// [examples]: https://github.com/hecrj/iced/tree/0.1/examples
/// [`download_progress`]: https://github.com/hecrj/iced/tree/0.1/examples/download_progress
/// [`stopwatch`]: https://github.com/hecrj/iced/tree/0.1/examples/stopwatch
pub trait Recipe<Hasher: std::hash::Hasher, Event> {
    /// The events that will be produced by a [`Subscription`] with this
    /// [`Recipe`].
    ///
    /// [`Subscription`]: struct.Subscription.html
    /// [`Recipe`]: trait.Recipe.html
    type Output;

    /// Hashes the [`Recipe`].
    ///
    /// This is used by runtimes to uniquely identify a [`Subscription`].
    ///
    /// [`Subscription`]: struct.Subscription.html
    /// [`Recipe`]: trait.Recipe.html
    fn hash(&self, state: &mut Hasher);

    /// Executes the [`Recipe`] and produces the stream of events of its
    /// [`Subscription`].
    ///
    /// It receives some stream of generic events, which is normally defined by
    /// shells.
    ///
    /// [`Subscription`]: struct.Subscription.html
    /// [`Recipe`]: trait.Recipe.html
    fn stream(
        self: Box<Self>,
        input: BoxStream<Event>,
    ) -> BoxStream<Self::Output>;
}

struct Map<Hasher, Event, A, B> {
    recipe: Box<dyn Recipe<Hasher, Event, Output = A>>,
    mapper: std::sync::Arc<dyn Fn(A) -> B + Send + Sync>,
}

impl<H, E, A, B> Map<H, E, A, B> {
    fn new(
        recipe: Box<dyn Recipe<H, E, Output = A>>,
        mapper: std::sync::Arc<dyn Fn(A) -> B + Send + Sync + 'static>,
    ) -> Self {
        Map { recipe, mapper }
    }
}

impl<H, E, A, B> Recipe<H, E> for Map<H, E, A, B>
where
    A: 'static,
    B: 'static,
    H: std::hash::Hasher,
{
    type Output = B;

    fn hash(&self, state: &mut H) {
        use std::hash::Hash;

        std::any::TypeId::of::<B>().hash(state);
        self.recipe.hash(state);
    }

    fn stream(self: Box<Self>, input: BoxStream<E>) -> BoxStream<Self::Output> {
        use futures::StreamExt;

        let mapper = self.mapper;

        Box::pin(
            self.recipe
                .stream(input)
                .map(move |element| mapper(element)),
        )
    }
}

struct With<Hasher, Event, A, B> {
    recipe: Box<dyn Recipe<Hasher, Event, Output = A>>,
    value: B,
}

impl<H, E, A, B> With<H, E, A, B> {
    fn new(recipe: Box<dyn Recipe<H, E, Output = A>>, value: B) -> Self {
        With { recipe, value }
    }
}

impl<H, E, A, B> Recipe<H, E> for With<H, E, A, B>
where
    A: 'static,
    B: 'static + std::hash::Hash + Clone + Send + Sync,
    H: std::hash::Hasher,
{
    type Output = (B, A);

    fn hash(&self, state: &mut H) {
        use std::hash::Hash;

        std::any::TypeId::of::<B>().hash(state);
        self.value.hash(state);
        self.recipe.hash(state);
    }

    fn stream(self: Box<Self>, input: BoxStream<E>) -> BoxStream<Self::Output> {
        use futures::StreamExt;

        let value = self.value;

        Box::pin(
            self.recipe
                .stream(input)
                .map(move |element| (value.clone(), element)),
        )
    }
}